The case of the Murphy Rebel, “eyeball vs. testing”


A Murphy Rebel builder forwarded the comment below in brown from the Murphy builders list. He was interested to know how I would respond to the writers comments. Rather than send back a private email, I thought it was worth putting up here, as we have about 10 builders putting the Corvair on the front of a Rebel, and I wanted them to understand why we know the combination will work, and why the guy below is not correct in all the assumptions he wrote into a single paragraph…..

“I seriously looked at the Corvair engines – but decided that with the wide front end of a Rebel – that the faster turning and therefore smaller diameter prop’ ( which you HAVE to use – in order to let the engine get up IN to it’s power band RPM range ) would be “inefficient” on the nose of such a meaty plane ( big front end ) …….
So I was forced by common sense to revert to a Lycosaurus ( Lycoming – dinosaur ) engine – with it’s slower turning / bigger diameter / more efficient propeller !”

Where do I start? OK, I’m not fond of the term Lycosaurus, even when it is used by people planning on buying a Lycoming. Moving on to more technical points, the biggest single argument, and the easiest thing for new builders to understand, is that we have long been successfully flying a plane that is bigger than a Rebel, has more frontal area, more drag, and a greater payload. Our Wagabond, flying since 2005, works great and actually flew with more payload than it’s empty weight……On a 100HP Corvair. So maybe the comments that the writer made don’t count. Simply put, his evaluation was based on his eyeball look and a handful of old wives tales, on the other side we have my testing and a plane that has been flying for 8 years.

Above, a Murphy Rebel. The cabin on the plane is 44″ wide, and it has a comparatively blunt windshield. A guy commented that the recommended prop size is 74” by 56 or 58, but this is only the prop for a 160hp Lycoming. For our comparison, let’s have a reasonable comparison looking at a 3,000 cc Corvair vs an O-235 and a 2,700 cc Corvair vs a Rotax. Below is a Chart off the Murphy site. Like almost every other airframe factory chart on the planet, lets just call the numbers ‘optimistic.’ (We have an O-320 Rebel here at our airport and it doesn’t match the chart, but this is typical in our industry.)

Engine Lyc O-320 Lyc O-235 Rotax 912 Rotax 912 Rotax 912
Horsepower 160 116 80 80 80
Power Loading (lb./hp) 10.3 14.2 18.1 15.4 16.88
Gross Weight (lb.) 1650 1650 1450 1232 1320
Empty Weight (lb.) 950 900 700 625 700
Useful Load (lb.) 700 750 750 607 650
Wing Area (sq. ft) 150 150 150 150 150
Wing Loading (lb./sq. ft) 11.0 11.0 9.7 7.0 9
Rate of Climb @ Gross (ft/min) 1200 800 500 800 550
Climb Speed (mph) 65 65 60 60 60
Take Off Run (ft) 300 400 450 300 450
Landing Roll (ft) 400 400 300 200 300
50′ Obstacle Clearance (ft) 533 754 976 626 976
Stall (No Flap) Power Off (mph) 44 44 40 38 40
Stall (FULL FLAP) Power On (mph) 40 40 36 35 36
Cruise (65% POWER) (mph) 120 105 100 85 100
Vne (mph) 151 151 143 143 143
Top Speed (mph) 140 125 100 105 100
Fuel Burn (gal/hr) 7 6 4 4 4
Fuel Capacity (US gal) 44 44 44 22 44
Range (hrs) 6.1 7.6 11.0 5.5 11
Range (statute miles) 733 797 880 468 880
G Limit (Ultimate) +5.7 -3.8 +5.7 -3.8 +5.7 -3.8 +5.7 -3.8 +5.7 -3.8

O-235 vs 3,000 cc. The 235 listed above makes 116hp.  If I asked the writer what exactly he ment by with it’s slower turning / bigger diameter / more efficient propeller !” He probably wouldn’t have an exact number in mind for rpm. Does 2,800 rpm sound real slow? Well that’s the rpm required to get 116 hp. Think I have been an A&P for 20 years and don’t know what I am talking about? Read the last model on the Wikipedia page: Also note that just about every 235 has to hit 2,800 to make rated power. Second, a fully dressed 235 weighs 280 pounds, at least 40 pounds heavier than a Corvair. A 235 is wide, within 1/4″ of the width of a 320. You can’t put a sleek cowl over it.

Now lets look at prop size: Think more diameter is always better for low speed thrust? Think again. Last week I changed props on Grace’s 85 HP Taylorcraft. I am setting it up to tow our glider. It had a 72 x 48 wood prop on it, and I got a 74 x 46 metal to replace it. But before I mounted it, I took it to American Props and paid $865 to have it overhauled, the pitch reduced, and to have its diamerter reduced to 70″. I am not a fool, The diameter reduction allowed higher rpm, and improved the climb rate by 500’/min. Props with diameters of 74″ are only efficient on engines like the Continental 65 with a low red line of 2300 rpm. Low rpm isn’t efficient in itself. A 65 Continental becomes a 75 continental with respect to power output by just a jet change and an RPM increase to 2600.  If turning the prop 300 rpm faster and using one with less diameter actually made less low speed thrust, than no one would have ever converted a 65 to a 75. Almost everything repeated in hangar flying stories or on discussion groups about rpm and efficiency is an old wives tale or pure BS that directly contradicts experience from certified engines and certified prop shops, but that never seems to stop people from repeating it as if it was told to them by Wilbur Wright and Kelly Johnson.

A 3,000 cc Corvair on a big plane can use either a 68 or 70″ in diameter prop. If the guy puts a 74″ prop on his 235, it is going to static near 2250 or 2300 rpm, 500 rpm below the engines rated power. He may tell people he has a 116 hp engine, but he isn’t going to get to use the last 12-16 horses unless he takes the diameter down to 70″ or so. Lets see…where is that big prop diameter difference the guy was speaking of? Yeah, it’s 2″, but don’t forget the Lycoming is 6″ wider, so which prop is operating with more blade area working in the clear?

We intentionally set up the Corvair to turn more rpm static, because more rpm is more power, and the Corvair builds hp much faster than prop efficiency decays, thus more rpm is a net increase in thrust.  A flatter pitch prop on a 3,000cc Corvair will static near 2,800 rpm. The tips will be well below sonic, and the power output will be near 100 hp. The 235 with a high-pitched prop will not only make slightly less power at 2350 rpm, the critical difference is looking at the blade angle of attack: much of the high-pitched blade will be stalled, far more of the low-pitched Corvair prop will be working. The Corvair will accelerate much better. You may have to read that twice to follow it, but real learning and understanding takes a bit more time than memorizing and parroting BS phrases like “Keep your prop as long as possible as long as possible!”

 Above, the wagabond outside our old hangar in Edgewater in 2006. It is built on a PA-22 airframe, which as a four place certified plane. It is bigger than a Rebel. It has taller gear, it has four lift struts, and at 147.5′ of wing area, it has just 2.5 feet less than a Rebel. In short, there is no rational reason to say that a Rebel would not fly as well or better on the same engine. In the photo, the plane is equipped with a basic 2,700 cc Corvair. Look at the prop, it is a 64″ diameter wood Sensenich. It worked great, it is using the same prop in the video link at the end of this story.

The picture above is just after Gus did the first flight in the plane in 2005, he is shaking hands with Dave. You can’t tell these things in pictures, but both Gus and Dave are about 6’3″ and they are both built like NFL defensive linemen. The empty weight of the plane was 804 with a 2700cc Corvair. We arbitrarily set the gross weight on the paperwork at 1320# to make it light sport compliant. We did a test flight at 1625 pounds during phase one. I was not worried structurally because we used a PA-22-108 colt airframe as the basis of the plane  which has a gross weight of 1650 pounds. The lift struts are off a 160 hp tripacer with a 2,000 pound gross.

The plane is not a speed demon. its fair to say that it will do 100 mph on 5 gallons per hour. It 100 hp climb rate at 1320 pounds is about 700 fpm on a standard day. Note that this is about the same as the 235 powered Rebel on the chart above. We are currently redoing the plane with some detail work intended to clean it up and repower it with a 3000cc Corvair. I am shooting to bring down the empty to 780 pounds or so. I have a 68″ Warp Drive for it. We are planning on bringing it to Oshkosh this year. I will gladly fly it against any 235 Rebel from standing start to 1,000′ agl. A smart guy with a light Rebel and a cut down prop would show very well against the Wagabond. But if the Rebel builder was the kind of guy who spent his time listening to old wives takes and bought a real expensive, big slow turning prop for his Rebel, It won’t be a contest at all.

A small number of people who read this will “get it.” The majority will not question the old wives tales they have been spoon fed over the years. They will not even stop to consider that none of the people who told them the tales had done any testing, had any education on the subject, or had put any real effort into learning. I have been sharing this type of information for 20 years, and still people say  “I seriously looked at the Corvair engines”  but evidently they don’t look close enough to really understand how engines and props work.

I used to wonder if I was doing a really poor job of sharing the things I had learned, because a lot of people still said things like the writer. I was operating under the false assumption that everyone in homebuilding wanted to really know how things worked, wanted to see the real tests, was willing to change their point of view if the facts indicated something different that their previous assumption.

I now understand that these conditions apply to just 5 or maybe 10% of the people in home building. I am OK with that, Corvairs are not for everyone, and they don’t need to have a giant following for our work to be successful. Having a few hundred traditional homebuilders, people who really want to learn, build and fly, to be the master of their creation, not its mere owner or operator, is all we need to flourish.  For those that get it, welcome. for those that don’t want to, I genuinely wish them good luck. They will need it, aviation isn’t terribly kind to people unwilling to learn.-ww 

If you would like to see a video of the plane in flight, look at this link to you-tube, it has 7,000 hits:-ww


About William Wynne
I have been continuously building, testing and flying Corvair engines since 1989. Information, parts and components that we developed and tested are now flying on several hundred Corvair powered aircraft. I earned a Bachelor of Science in Professional Aeronautics and an A&P license from Embry-Riddle Aeronautical University, and have a proven 20 year track record of effectively teaching homebuilders how to create and fly their own Corvair powered planes. Much of this is chronicled at and in more than 50 magazine articles.

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: